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Background: The COVID-19 pandemic was largely 
driven by genetic mutations of SARS-CoV-2, leading 
in some instances to enhanced infectiousness of the 
virus or its capacity to evade the host immune system. 
To closely monitor SARS-CoV-2 evolution and result-
ing variants at genomic-level, an innovative pipeline 
termed SARSeq was developed in Austria. Aim: We 
discuss technical aspects of the SARSeq pipeline, 
describe its performance and present noteworthy 
results it enabled during the pandemic in Austria. 
Methods: The SARSeq pipeline was set up as a collab-
oration between private and public clinical diagnostic 
laboratories, a public health agency, and an aca-
demic institution. Representative SARS-CoV-2 positive 
specimens from each of the nine Austrian provinces 
were obtained from SARS-CoV-2 testing laboratories 
and processed centrally in an academic setting for 
S-gene sequencing and analysis. Results: SARS-CoV-2 
sequences from up to 2,880 cases weekly resulted 
in 222,784 characterised case samples in January 
2021–March 2023. Consequently, Austria delivered 
the fourth densest genomic surveillance worldwide in 

a very resource-efficient manner. While most SARS-
CoV-2 variants during the study showed comparable 
kinetic behaviour in all of Austria, some, like Beta, 
had a more focused spread. This highlighted multi-
faceted aspects of local population-level acquired 
immunity. The nationwide surveillance system ena-
bled reliable nowcasting. Measured early growth 
kinetics of variants were predictive of later incidence 
peaks. Conclusion: With low automation, labour, and 
cost requirements, SARSeq is adaptable to monitor 
other pathogens and advantageous even for resource-
limited countries. This multiplexed genomic surveil-
lance system has potential as a rapid response tool for 
future emerging threats.

Introduction
During the COVID-19 pandemic, societies and global 
healthcare systems needed information on the num-
ber and extent of COVID-19 cases to identify disease 
transmission hotspots and implement targeted inter-
ventions. At the same time, severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) – the virus 
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responsible for COVID-19 –, underwent rapid evolu-
tion, resulting in virus variants, some of which having 
increased transmissibility and/or enhanced capac-
ity to escape host immunity. The appearance of vari-
ants underlined the value of complementing reliable 
COVID-19 case count estimates, with knowledge of 
genetic mutations appearing in circulating SARS-CoV-2 
strains, so that viral infection trends in populations 
could be better understood and anticipated. The World 
Health Organization (WHO) and the European Centre 
for Disease Prevention and Control (ECDC) called for 
genomic monitoring and the European Commission 
recommended sequencing samples of at least 5% of 
SARS-CoV-2 cases [1].
Various strategies were developed worldwide to 
achieve useful and informative genomic surveillance 
for SARS-CoV-2 [2-10]. However, many countries fell 
short of meeting the challenging requirements of this 
objective. Moreover, since mid-2023, global sequenc-
ing capacities have dropped dramatically due to the 
high infrastructural, financial, and technical needs to 
maintain these [11,12]. As genomic surveillance also 
constitutes a pillar of pandemic preparedness, it must 
be sustainable, in other words, cost-effective, techni-
cally straightforward to implement and apply, as well 
as able to deliver rapid and high-quality results.

Here we present Austria’s SARS-CoV-2 genomic sur-
veillance pipeline, called SARSeq, which was used 
in the country during the COVID-19 pandemic. This 
pipeline relies on an approach developed in our labo-
ratory, which uses focussed but highly multiplexed 
sequencing [13]. We aim to describe some aspects of 
the SARSeq setup and performance, that make it an 

attractive tool for baseline surveillance and to prepare 
for future pandemics.

Methods

Set up of a genomic surveillance in Austria
In winter 2020/21, the Austrian Agency of Health 
and Food Safety (AGES) expanded the comprehen-
sive COVID-19 case-based surveillance with genomic 
monitoring of SARS-CoV-2. Collaborating laborato-
ries provided SARS-CoV-2 RNA from specimens of 
cases in the nine Austrian provinces, as exempli-
fied in the  Supplementary Material Figure S11. AGES 
centrally collected and selected the RNA samples to 
obtain a representative number of these per province 
and arrayed them in multi-well plates. The required 
weekly sample size for variant detection at 1%, 2.5% 
or 4% was computed according to Wayne et al [14] 
and the ECDC technical report [15]. The Institute of 
Molecular Biotechnology of the Austrian Academy 
of Science (IMBA) obtained arrayed RNA from repre-
sentative cases. RNA was processed to obtain genetic 
sequences using the SARSeq sequencing pipeline, fol-
lowed by semi-automated analysis of the genomic data 
and weekly reporting of results.

Principle of SARSeq
As opposed to adopting a whole genome sequencing 
(WGS) strategy, SARSeq focuses on amplifying and 
sequencing a genetic region of interest in the genome 
of a pathogen (e.g. the S-gene region of SARS-CoV-2). 
As in other protocols, amplification of this region of 
interest involves generation of multiple partially over-
lapping amplicons (i.e. tiles) that cover the whole 

What did you want to address in this study and why?
During the COVID-19 pandemic, mutations in the genome of SARS-CoV-2, the virus causing COVID-19, 
resulted in some instances in more infectious SARS-CoV-2 variants. A genomic surveillance of SARS-CoV-2 
and its variants was thus important. To this end, Austria employed an innovative approach termed SARSeq. 
We aimed to describe SARSeq and some noteworthy findings that it enabled on SARS-CoV-2 between 
January 2021 and March 2023.

What have we learnt from this study?
The SARSeq pipeline constituted a reliable and simple-to-implement surveillance tool. Genomic monitoring 
achieved through SARseq provided relevant insights on emergence of relevant SARS-CoV-2 variants in 
Austria. The surveillance also permitted faithful nowcasting and prediction of increases of COVID-19 cases 
(i.e. epidemic peaks). This information supported initiatives by public health authorities and bodies to 
mitigate the virus spread.

What are the implications of your findings for public health?
SARSeq is a resource-efficient genomic surveillance tool, not requiring complex automatisation. It was 
sufficient to detect multiple SARS-CoV-2 variants in Austria during the pandemic and to timely inform 
decision-makers on emerging variants. The method enables SARS-CoV-2 genomic surveillance beyond the 
pandemic and can be adapted to other pathogens. The pipeline can also be used in countries with limited 
technical resources and infrastructure.
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region. The tiles are subsequently sequenced and 
sequence data obtained from each tile are then bio-
informatically assembled revealing the entire region’s 
sequence. Through the sequence, some pathogen 
characteristics can be determined (e.g. a particular 
variant of SARS-CoV-2).

In conventional protocols, the PCR amplification pro-
cess typically neither introduces sample identifi-
ers that allow, when many cases are simultaneously 

investigated, to assign the pathogen’s sequence back 
to the infected individual, nor adapters for further 
steps such as sequencing. Thus, conventional proto-
cols generally require several steps of ‘library prepa-
ration’ before the PCR, including end-repair, overhang 
generation and adapter ligation. These steps, and 
required clean-up procedures in between, can be 
costly, labour-intensive and require considerable auto-
mation. In contrast, the SARSeq strategy enables to 
add sample identifier indices and sequence adaptors 

Figure 1
(A) Workflow and (B,C) efficiency of the Austrian SARS-CoV-2 genomic surveillance, as well as (D) relative contribution of 
SARSeq to the surveillance system, Austria, January 2021–March 2023
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AGES: Austrian Agency of Health and Food Safety; CeMM: Research Center for Molecular Medicine of the Austrian Academy of Sciences; IMBA: 
Institute of Molecular Biotechnology of the Austrian Academy of Science; NGS: next generation sequencing; RT: reverse transcription.

A. Workflow of the Austrian genomic surveillance pipeline. RNAs from individuals are extracted by laboratories in the country’s provinces and 
AGES selects representative samples, which are delivered to IMBA where they are processed through SARSeq (pipetting for RT, PCRs) in 
preparation for NGS. After NGS, semi-automated analysis of sequence data enables reporting of the results.

B. Violin plots showing the duration in days from sample collection to sequence submission to GISAID per analysis week. The grey dotted box 
highlights the duration of RT, PCR, NGS and analysis. The asterisk (*) denotes a holiday-related analysis week, resulting in older processed 
samples due to pipeline inactivity.

C. Sequenced data obtained by Austria and other countries, in the period of SARSeq pipeline operation. Data are normalised to country 
population. Coverage was determined using information on amounts of generated sequences, available from GISAID (from the SARSeq 
period: 01.2021 to 03.2023, accessed April 2023), and population counts from Our World in Data (https://ourworldindata.org/grapher/
population?time=latest; accessed April 2023).

D. Total sequenced data originating from Austria during the SARSeq pipeline operation.
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directly during PCR amplification. SARSeq was adapted 
from a method that we originally developed for detect-
ing SARS-CoV-2 and other viruses [13], as described in 
the Supplementary Material Supplement 1 section.

In the SARSeq method, many cases’ samples are simul-
taneously analysed. In brief, subsets of samples are 
assembled, in which tiles covering the genomic region 
of interest are amplified in parallel for each individual 
sample. Primers used to amplify the tiles all carry indi-
ces pointing to the individual sample. To prevent mis-
assignments, the information encoded in the 5’ and 3’ 
primers is redundant, so-called ‘dual’ indices. Primers 
also contain common adapter sequences (i5, i7) for 
the next step. To enable encoding of multiple subsets, 
individual samples in a subset are then merged, so 
that each sample subset ends up in a sub-pool. A sec-
ond PCR with complementary primers to the common 
adapter sequences (i5, i7) is then performed to further 
amplify all amplicons of each sub-pool in parallel. In 
this step, another set of indices, redundantly pointing 
towards the particular sub-pool are incorporated, as 
well as further sequencing adapter sequences (P5, P7). 
Together, this results in a combinatorial encoding of 
sample coordinates whereby each coordinate (i.e. sam-
ple and sample subset) is encoded redundantly.
We refer to this strategy as two-dimensional, unique 
dual indexing [13]. This design allows direct next gener-
ation sequencing (NGS) by Illumina platforms without 
the ligation-based library preparation of conventional 
protocols. The workflow reduces the entire process of 
sample preparation to six pipetting steps and circum-
vents intermediate purification steps, as presented 
in the  Supplementary Material  and in  Supplementary 
Dataset 1. The multiplex nature of SARSeq, also enables 
it to obtain sequencing information from more than one 
genetic region of interest if more detailed characteris-
tics of the pathogen are needed. Moreover, it also per-
mits to obtain sequence data from several pathogens 
at the same time (e.g. SARS-CoV-2 and influenza A). 
More information on the SARSeq method can be found 
in the  Supplementary Material and Supplementary 
Figure S2, as well as the  Supplementary Datasets 1 
and 2.

SARS-CoV-2 genomic surveillance with 
SARSeq and expansion of the pipeline
For genomic surveillance of SARS-CoV-2 in Austria, 
the genetic region of interest was that encoding the 
N-terminal (NTD) and receptor-binding domains (RBD) of 
the spike protein. The region is shown in the Figure S1A 
of the  Supplementary Material. The two domains are 
crucial for SARS-CoV-2 infectivity and human immune 
interactions [16,17]. The region comprises two-thirds of 
the S gene and ca 10% of the SARS-CoV-2 genome, yet 
from it all important information for variant assignment 
can be retrieved, as well as data to monitor new muta-
tions of possible concern. This is illustrated in Figure 
S2A, B in the Supplementary Material.

Amplicons of the tiles had a length of ca 280 bp. They 
had minimal overlap, except those covering the region 
for the RBD (encoding amino acid 470 to 502) to improve 
recovery of the RDB sequence, which is highly variable. 
To enable generation of desired amplicons, two inde-
pendent sets of amplicons for this region were gener-
ated in parallel during the first PCR step. Subsequently, 
these sets were pooled. An illustration of the approach 
is provided in Figure S2C in the  Supplementary 
Material.

As the pandemic progressed, the SARSeq pipeline 
was successively expanded. More genetic regions of 
interest comprised the 5’ genomic region to detect 
recombinants (tiles 1 and 2), the nucleotide sequence 
for nonstructural protein 5 (nsp5) to monitor Paxlovid 
resistance (tile 3), as well as the N gene (tile 18). 
Amplification and sequencing of influenza A was also 
included to monitor SARS-CoV-2/influenza co-infec-
tions. The tiles in question can be seen in Figure S2B 
of the Supplementary Material.

Addition of an amplicon for the human gene encoding 
the β2 microglobulin protein (B2M) ensured monitoring 
of sample quality. The B2M gene was selected based on 
most reproducible detectability, as assessed by total 
RNA sequencing (RNAseq), and allowed the design of 
intron flanking primers to ensure RNA detection, unlike 
the commonly used, unspliced RNase P RNA control 
whose amplification is confounded by amplification 
of genomic DNA (Figure S2A, B in the  Supplementary 
Material) [18]. The  Supplementary Material  presents 
more details in the Supplement 1 section, as well as 
all methods in the Data analysis subsection of the 
Supplement 2 section.

Successfully sequenced samples were included in 
the analyses. More information can be found in the 
Figures available in  Supplementary Material  and 
in Supplementary Table 1, where weeks with more than 
30 samples per analysed province are displayed.

Assigning strains to lineages and mutation 
analysis
Analysis of sequence data was done semi-automat-
ically. Upon completion of NGS, automatic demulti-
plexing, alignment, pangolin annotation as well as 
similarity-based clustering of sequences was con-
ducted. For bioinformatic analysis and variant anno-
tation an expert system, along with the pangolin 
annotation package was implemented [19], as explained 
in the Supplementary Material Supplement 1 and 2 sec-
tions. This was followed by manual sample annotation 
and case follow-up, as illustrated in Figures S2E and S5 
of the Supplementary Material. Manual inspection was 
implemented due to the focused sequence coverage 
of the SARS-CoV-2 genome. This also allowed a good 
overview of rare or novel mutations. The automatic out-
put additionally displayed non-fixed mutations (20–
50% of reads for a sample) enabling detection of e.g. 
double infections by detection of mutations indicative 



5www.eurosurveillance.org

Figure 2
Integration of genomic data with epidemiological surveillance to monitor variant dynamics, Austria, January 2021−March 
2023 (n = 222,784 samples)
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of different SARS-CoV-2 sub-lineages, and viral sub-
populations within patients (Figure S3A and B in the 
Supplementary Material). The bioinformatic script for 
semi-automatic analysis is available at GitHub (see 
code availability statement).

Estimations of proportions of variants 
circulating
Extrapolation of relative variant proportions was based 
on weekly average of incidence counts from official 
case reporting by AGES, as shown in  Supplementary 
Table 2, with sewage surveillance data used from 
calendar week (CW) 13 2022 onward, due to changes 
in testing behaviour. The conversion quotient was 
determined as the mean ratio of reported infections 
and sewage signal (https://abwassermonitoring.at/
dashboard/) during the initial Omicron (Pango line-
age designation B.1.1.529) wave (CW 09 2022−CW 22 
2022). Details can be found in the Supplement S2 sec-
tion ‘Extrapolated incidence’ of the Supplementary 
Material and the Supplementary Table 2.

Nowcast
First, predicted absolute case numbers per variant 
were calculated based on observed growth rates from 
the previous 3 weeks. Subsequently a correction factor 
to real observed current COVID-19 counts was used to 
adjust e.g. for changes in social behaviour and popula-
tion immunity. Details can be found in the Supplement 
S2 section ‘Nowcast’ of the Supplementary Material and 
in Supplementary Table 3.

Doubling time and time to dominance
Doubling time for each variant was calculated based 
on curve fitting on total extrapolated incidences cal-
culated as above. This is illustrated in Figure S14 
of the  Supplementary Material. Time to dominance 
(TTD) was calculated based on transition time from 
10% to 60% prevalence on fitted sigmoidal curves 
as described in the  Supplementary Material Figures 
S15A, S16. The  Supplement S2 of the Supplementary 
Material  and  Supplementary Table 4  (sheet TTD) 
provide details.

Results

Efficiency of the Austrian surveillance system
SARSeq avoids conventional library-preparation steps, 
resulting in resource-efficient and streamlined pro-
cessing with only six pipetting steps and no cleanup of 
samples. The pipeline enabled nationwide SARS-CoV-2 
surveillance in Austria (ca 9 million inhabitants), with 
a team of two full-time employees and two half-time 
employees and simple robotic equipment, as shown 
in Figures S1–S9 in the Supplementary Material.

Arrayed RNA samples were delivered to IMBA every 
Monday. The period of sample processing through 
the pipeline until results were obtained spanned 4 to 
5 days, encompassing semi-automated pipetting from 
Monday to Wednesday, next generation sequencing 

(NGS) with automatic NGS data analysis (taking 
ca 5 hours), from Wednesday to Thursday, manual vari-
ant curation (details in ‘Data analysis and reporting’), 
and report preparation on Friday (Figure 1A).

The SARSeq-based Austrian genomic surveillance pipe-
line demonstrated a median turnover time of 11 days 
(minimum: 5 days; maximum: 34 days) from sample col-
lection to sequence submission to GISAID (Figure 1B). 
The time from RNA sample delivery to GISAID sequence 
upload ranged from 4 to 5 days. The pipeline consist-
ently performed without failures throughout its over 
2-year operation and generated 72% of all sequenced 
data in Austria, ranking the country ninth globally in 
total sequence submissions and fourth (for countries 
with a population > 1 million) in terms of sequenced data 
per capita (Figure 1C,D; Figure S10 in the Supplementary 
Material and Supplementary Table 4).

Output of the Austrian genomic surveillance
The SARSeq pipeline started in January 2021 and suc-
cessfully sequenced 222,784 samples by end March 
2023 at an average rate of ca 2,000 samples per week 
(Figure 2A). This comprehensive dataset provided the 
opportunity to investigate the dynamics of multiple 
SARS-CoV-2 variants in Austria at province resolu-
tion, as shown in the Figure S13 panels A and B of the 
Supplementary Material.

The methodology with semi-automated analysis also 
allowed us to identify various insertions of amino 
acids in spike position 212, which were detected 41 
times in Austria; viruses with these insertions turned 
out to be prevalent in several European countries, yet 
overlooked by automated analysis tools [20]. We also 
detected co-infections with Influenza A in up to 3.8% 
of COVID-19 patients in December 2022 (Figure S3 in 
the Supplementary Material).

Emergence of sub-lineages and mutations 
within specific variants
SARSeq not only allowed monitoring the emergence 
and spread of major lineages, but also tracking minor 
sub-lineages and significant single mutations over 
time, such as a Delta variant (Pango lineage desig-
nation B.1.617.2) with an additional spike T95I muta-
tion, which emerged in Austria approximately 3 weeks 
after Delta and expanded with similar kinetics (Figure 
2B and Supplementary Table 4, Mutations). While T95I 
was also observed in other variants (e.g. in AY.4.2 and 
BA.1), the ratio between both Delta variants remained 
largely unchanged, with approximately one third har-
bouring the T95I mutation.

Within the Alpha variant (Pango lineage designa-
tion B.1.1.7), diversification of the viral spike protein 
was observed, with the most prominent mutations 
being spike T716V and E484K (Supplementary Table 
4, Mutations). Of greater relevance was the appear-
ance of Omicron (Pango lineage designation B.1.1.529) 
sub-lineages BA.2 and BA.5 and recombinants during 
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Figure 3
Dynamics of major SARS-CoV-2 variants in Austria and Austrian provinces, January 2021−March 2023
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the second peak of the BA.5 wave, leading to a new 
‘mixed’ wave. An obvious feature of this wave was a 
convergence of mutations such as spike R346, K444, 
V445, G446, L452, N460, F486, F490, through distinct 
phylogeny, due to natural selection for immune eva-
sion against current predominant population immu-
nity, as illustrated in Figure S12A in the Supplementary 
Material [21,22].

Nowcast and its reliability
The pipeline’s key strength is its short turnaround time 
of just 4–5 days from RNA sample receipt or < 2 weeks 
from sample collection (Figure 1B). To predict the cur-
rent variant mix at any given time we estimated the 
relative and absolute case number for each variant as 
nowcast. In hindsight, we evaluated the confidence of 
our predictions (Figure 2C). The maximal difference of 
the predicted variant share to observation was less 
than 5%, as shown in Figure S12C in the Supplementary 
Material  and such discrepancies were only seen in 
situations of rapid variant take-over. Median accuracy 
of prediction was +/− 0.7%. For 81% of predictions, 
nowcasting predicted shares within 3% of measured 
value. Despite fluctuations in provincial representa-
tiveness, nowcasting was thus a precise tool to pre-
dict current variant mixes based on samples obtained 
within the 5–2 previous weeks and overcame lag-time 
included in the turnaround time of our pipeline.

Weekly incidence estimates of the variants
Austria reported the highest per capita testing rate and 
consequently the highest per capita SARS-CoV-2 infec-
tions globally, as illustrated on the  Supplementary 
Figure S13 panel D  [23]. This allowed to inform mod-
els incorporating variant dynamics into epidemiologi-
cal curves. When testing activities declined after BA.2, 
Austria had set up a detailed sewage monitoring sys-
tem quantifying viral load in more than 90 wastewater 
treatment plants reaching an estimated 60% of the 
population [24]. We normalised viral load in sewage to 
case counts during the initial Omicron wave and mod-
elled results based on sewage data from CW 13 2022 
onwards. Displaying the variants in absolute numbers 
(Figure 2D) gave insight on their expected kinetics. 
On the panel D of this figure, officially reported case 
counts are shown as a solid grey line.

In several instances, variants re-emerged in response 
to relaxed measures or changes in social behaviours. 
The declining Delta wave experienced a short increase 
in CW 1 and CW 2 of 2022, likely linked to the end of the 
fourth lockdown and increased social interaction after 
the winter holidays. Similarly, the BA.1.1 variant showed 
a temporal increase in CWs 9 and 10 of 2022 likely due 
to the lifting of the mask requirement in schools and 
the dropping of 3G rules (admission to public places 
restricted to vaccinated, recently tested negative or 
convalescent individuals) in the same weeks. BA.5 
increased again after the summer holidays in the first 
weeks of September 2022 (from CW 37 onwards).

Based on reported cases, Omicron BA.2 exhibited the 
highest total incidence numbers (1.58 × 106  detected 
infections, 17% of the Austrian population) followed 
by BA.1 (including BA.1.1: 1.42 × 106), and BA.5 
(1.0 × 106,  Figure S12B in the Supplementary Material). 
However, sewage monitoring revealed that BA.5 
accounted for most infections, with an estimated 
1.72 × 106 cases (19%).

Consistent regional dynamics of major SARS-
CoV-2 variants in Austria
We aimed at quantifying the growth dynamics of SARS-
CoV-2 variants in Austria. The distribution of extrapo-
lated absolute case counts per CW illustrated initial 
exponential growth (as linear growth in the logarithmic 
scale,  Figure 3A). We imputed doubling times of vari-
ous variants by curve fitting, as shown in Figure S14 in 
the Supplementary Material. BA.2 cases doubled with 
a doubling time of 0.53 weeks, followed by BA.1.1 and 
BA.1 at 0.72 and 0.81 weeks respectively. Intermediate 
growth was observed for EG.1, BA.5, Alpha and XBB1.5 
(0.86, 0.96, 1.10 and 1.13 weeks), while the doubling 
time of Delta, all BA.5 subvariants, as well BA.2.75 and 
its subvariants exceeded 1.5 weeks (Figure 3B).

Austrian provinces differ in geography, population 
density, and had distinct social distancing measures 
in place. We thus compared variant spread across 
Austrian provinces. Estimates of absolute growth were 
hampered by differences in testing (Supplementary 
Table 4, Test capacities AT provinces). We therefore 
compared relative growth rates of variants in the differ-
ent provinces of Austria. All dominant variants showed 
remarkably parallel epidemiological curves across 
Austrian provinces except for Alpha that spread later 
in Tyrol than the rest of the country. The plots are pre-
sented in Figure S15A of the Supplementary Material.

To determine relative variant growth kinetics, the TTD 
of the variants was defined as the time from 10% to 
60% prevalence using fitted curves (Figure S16 in the 
Supplementary Material and Methods). BA.1 exhibited 
the shortest TTD, followed by BA.5 and Delta. While 
BA.2 showed the shortest absolute doubling time 
(Figure 3B), its TTD was relatively long due to high 
prevalence of BA.1 when BA.2 appeared. Comparing 
Austrian provinces, we found that TTD depended pri-
marily on viral variants, with little variation between 
provinces. We calculated the percentage difference in 
each province compared with the Austrian average. 
The province of Vorarlberg showed a trend of shorter 
TTD for all variants (10% and 40%, Figure 3C) while no 
trend emerged for other provinces. Vienna and Styria 
showed an almost 50% faster growth for BA.1/BA.2, 
but this translated only into 6–7 days. Of note, ‘mixed’ 
variants were not considered due to similar growth 
kinetics (Figure 3B), small relative shares, and sparse 
regional data. Overall, we observed a remarkable syn-
chrony of variant expansion kinetics across all prov-
inces, despite varying population densities ranging 
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from 59 (Carinthia) to 4,654 (Vienna) inhabitants per 
square kilometre [25].

We next analysed variant appearance time, defined 
at 10% prevalence in each province relative to the 
Austrian average using fitted curves (Figure 3D  and 
Figure S16 in the Supplementary Material). Overall, the 
appearance of variants was extremely homogeneous 
with time differences of typically < 1 week and followed 
no specific pattern. The co-existing ‘mixed’ variants 
exhibited the most substantial difference in reaching 
the first 10% prevalence and relative distribution 
differed between provinces. In contrast a minor 
difference was observed for BA.1/BA.2, BA.4/BA.5 and 
Delta variants. As prior noted, the only exception to 
this rule was the appearance of Alpha in Tyrol (Figure 
S15A in the Supplementary Material), that was delayed 
by approximately 1 month due to appearance of Beta 
(Pango lineage designation B.1.351) and accompanying 
testing programmes, travel restriction, and prioritised 
vaccine roll-out in this province [26,27]. Together, our 
analysis revealed surprisingly minor differences in the 
regional appearance and kinetics of the five dominant 
variants (Figure 3D), despite differences in geography 
and population density.

Regional differences of minor variants in 
Austria
In contrast to major variants, we observed notable 
variations in the prevalence of some minor variants 
(Figure 4A-I). Of particular significance was the detec-
tion of a cluster of Beta in Tyrol, which occurred con-
currently with the presence of the Alpha variant in 
Vienna and other provinces (Figure 4B and Figure S15A, 
Alpha, in the Supplementary Material), but not in Tyrol. 
Interestingly, the Beta wave in Tyrol preceded signifi-
cant waves in other European countries (Figure 4A). 
Notably however, Beta rapidly declined in Tyrol while 
it persisted in Vienna and other European countries 
such as France, presumably due to effective contain-
ment measures in Tyrol specifically against this variant 
[26,27]. Following the Beta cluster, Alpha with a spike 
E484K mutation and Gamma (Pango lineage designa-
tion P.1) variants became predominant in Tyrol (Figure 
4C,D).

The R.1 variant was detected in Vienna in February 2021 
and briefly increased in prevalence while R.1 generated 
a larger cluster in Salzburg that was detected during ca 
5 weeks in March 2021 (Figure 4E). Eta (Pango lineage 
designation: B.1.525;  Figure 4F) and XBF (Figure 4G) 

Figure 4
Prevalence during certain periods of minor SARS-CoV-2 variants in (A) European countries and (B−I) provinces in Austria, 
January 2021−March 2023
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also primarily expanded in Salzburg, while Mu (Pango 
lineage designation: B.1.621) was almost exclusively 
detected in Vorarlberg (Figure 4H), showing a decline 
in week 22 of 2022, preceding its designation as a 
variant of interest (VOI) by the WHO in week 35 [28]. 
CH.1.1 was also initially detected in Vorarlberg (Figure 
4I). Remarkably most local clusters appeared in the 
western provinces of Austria that have more exchange 
with neighbouring countries and are geographically 
separated from the rest of Austria through mountain 
ranges. These observations highlight that numerous 
variants spread locally during the pandemic resulting 
in distinct infection histories of local populations and 
suggest that also today local variants exist worldwide 
− undetected due to sparse monitoring.

Variant surveillance enables prediction of 
epidemic peaks
During a pandemic, anticipation of incidence peaks is 
pivotal to timely break transmission chains and prevent 
a public healthcare system overload. To find out how 
early we could predict emerging variants with spread 
potential, we first retrospectively investigated if there 
was a correlation between a variant’s peak incidence 
and its prior growth rate observed at an incidence of 
5% or 10%. Important variants reached this respec-
tive prevalence share at 7–9 weeks before incidence 
peak (Figure 5A and Figure S15B in the Supplementary 
Material) allowing for early prediction. Growth rates 
showed a very good correlation (R2 = 0.84 for 10% and 
0.80 for 5% relative incidence) to the peak incidence 
detected later (Figure 5B  and Figure S15C). Therefore, 
our surveillance system in Austria was sufficient to 

predict incidence peaks with potential to impact the 
healthcare system several weeks in advance. 

Discussion
Our SARSeq-based sequencing and analysis approach 
demonstrated exceptional effectiveness and robust-
ness to monitor SARS-CoV-2 throughout the COVID-19 
pandemic. It ensured a comprehensive SARS-CoV-2 
genomic surveillance in Austria, which ranked fourth 
globally among countries with over 1 million inhabit-
ants in terms of sequencing intensity. With a total 
price of 20 EUR per sample in our pipeline, the setup 
was moreover resource-efficient. The methodology is 
adaptable and suitable for any sustained pathogen 
surveillance, and the protocol does not require com-
plex automation. It is thus ideally suited for countries 
with limited resources as well.

The SARSeq protocol simplifies sample processing, 
also offering a fast turnaround time. SARSeq allowed 
sample processing, sequencing and annotation to be 
done consistently and without failure within 4–5 days, 
revealing, however, sample collection and shipment as 
bottle necks. The median analysis time from sample 
collection to sequence submission was 11 days (Figure 
1B), with less than 50% of that time attributed to sam-
ple processing and sequencing. Improving logistics 
in sample collection and increasing the frequency of 
analysis runs could further maximise the timeliness of 
genomic surveillance.

The sampling strategy representative for time (week) 
and place (province) for SARS-CoV-2 genomic analyses 

Figure 5
Monitoring SARS-CoV-2 variants enables the anticipation of epidemic peaks, Austria, January 2021−March 2023
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across Austria enabled precise nowcasting (within 
+/ − 0.7%) aiding effective guidance to health interven-
tions and response strategies in the country. Generally, 
this highlights the power of collaboration between 
state authorities, molecular biology and infectious dis-
ease epidemiology experts in academic settings.

Intensive person testing and sewage monitoring in 
Austria enabled a fine-grained extrapolation to abso-
lute numbers of SARS-CoV-2 incidences as well as to 
estimate dynamics of variant spread. This analysis 
revealed a good correlation between initial growth 
rates and peak infection rates but not with the total 
infection count. Extrapolation to absolute numbers also 
showed the impact of reduced social distancing meas-
ures on the dynamics of already declining variants like 
a temporary re-appearance of Delta and BA.1.1, as well 
as the emergence of a second wave of the BA.5 variant.

Through SARSeq results, it was possible to observe 
that minor variants tended to spread locally, while 
major variants showed parallel kinetics across prov-
inces. In Tyrol, the Beta variant was selectively tested 
for by rapid-turnover, variant-specific PCR in large test-
ing efforts. Indeed, this variant dramatically declined 
in numbers shortly after its appearance but persisted 
for an extended time in Vienna and internationally. 
This shows that non-pharmaceutical intervention such 
as selective testing and isolation efforts focused on 
a specific variant can help to suppress its expansion, 
thereby changing relative fitness of the variant in the 
specific setting.

We further detected a notable co-infection rate of 
SARS-CoV-2 and influenza A in up to 3.8% of samples 
in week 51 of 2022. Based on official estimates [29], 
the influenza season 2022/23 peaked in weeks 50–51 
with ca 5% of the population infected. While this find-
ing suggests that there might be no strong evidence of 
viral interference between SARS-CoV-2 and influenza 
A, further investigations are required to thoroughly 
explore this aspect. This also demonstrates the pos-
sibility of expanding the panel of analysed respiratory 
infections to monitor rare or emerging pathogens both 
in a baseline surveillance setting as well as an immedi-
ate response to ‘disease X’ [30].

The strength of SARSeq is that it represents a mid-
dle ground between variant-specific qPCR and com-
plete genomic analysis, providing a resource-efficient 
and effective alternative to WGS. On the other hand, 
the system has some limitations that should be men-
tioned. Concerning SARS-CoV-2 surveillance, the focus 
of SARSeq on the S gene somewhat limits sub-lineage 
resolution and recombinant detection. For example, we 
could not distinguish between BA.4 and BA.5, which 
vary in five non-silent mutations outside the S gene, 
in CW 17–22 of 2022 until we introduced tile 1 (Figure 
S2A). Similarly, we introduced tile 2 to identify the 
BA.1–BA.2 recombinant XE, as illustrated in  Figure 
S2E in the Supplementary Material. The flexibility of 

the setup enables such updates seamlessly. Focused 
sequencing further hampered use of some automated 
phylogeny tools and was thus complemented with 
WGS, as shown in Figure S9B in the Supplementary 
Material.

Conclusion
This retrospective analysis of SARSeq, a highly stream-
lined NGS pipeline for genomic surveillance of patho-
gens, illustrates its low constraints on automation, 
personnel, and costs as well as the flexibility to adjust 
to novel targets. With the detailed experimental proto-
cols provided herein, SARSeq can serve as a blueprint 
to strengthen surveillance programmes globally.
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